2023.06.23. (Fri) 15:15~16:45 15 min (ENG)

Cross Specialty Session 2. EP - Neurology

Understanding Atrial Cardiopathy

Seung Yong Shin, M.D., PhD.

Professor of Medicine, Chung-Ang University, Seoul, KOREA

Director of EP Division, Cardiovascular & Arrhythmia Center, Chung-Ang University Hospital, Seoul, KOREA

Adj. Prof. of Grad. Sch. of Convergence and Innovation in Technology and Engineering (CITE), POSTECH, Pohang, KOREA

Center for Precision Medicine Platform Based-on Smart Hemo-Dynamic Index (SHDI), Seoul, KOREA

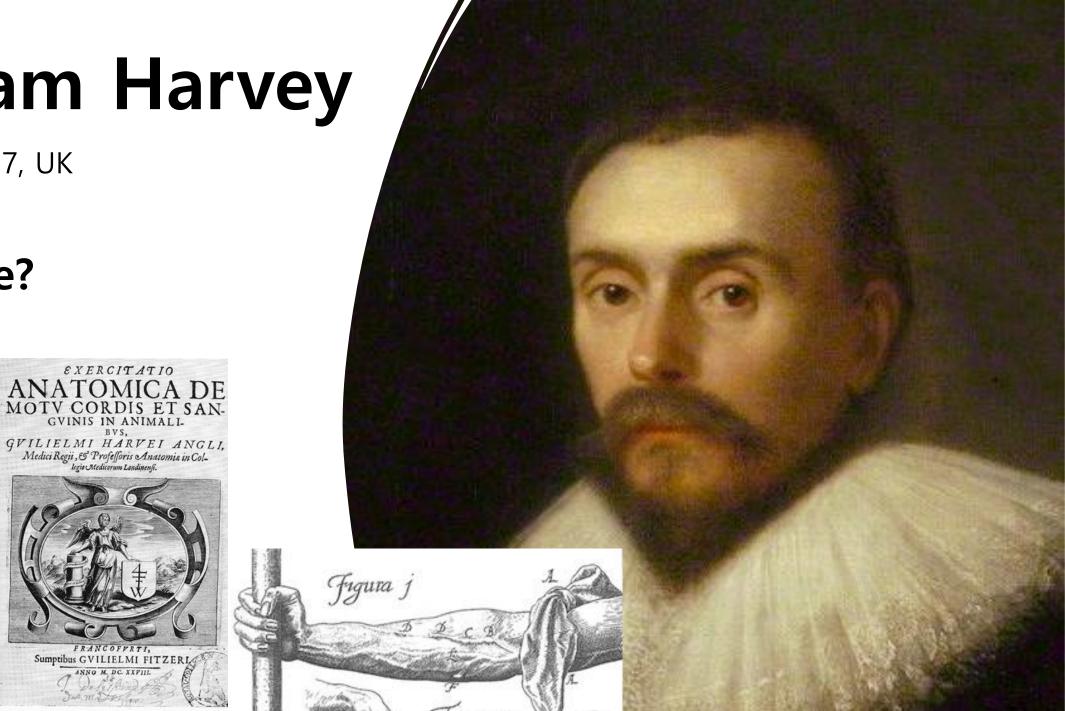
한국의 중^아에서 세계의 중^아으로

Toward the University of the world from Chung- Ang of Korea

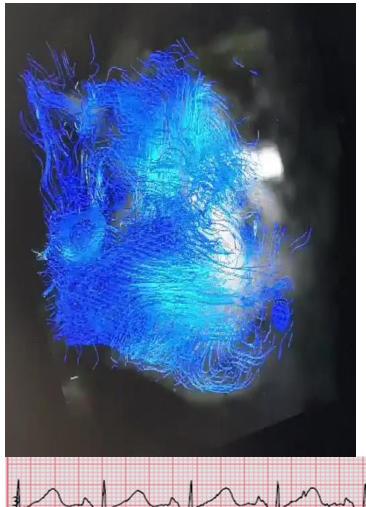
William Harvey

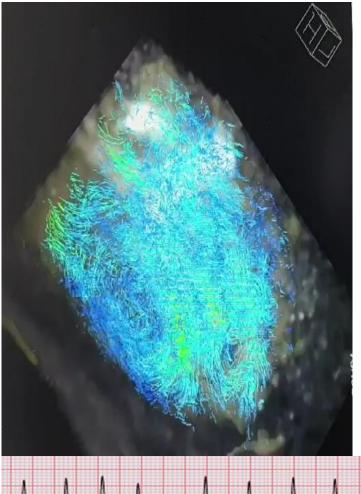
EXERCITATIO

FRANCOFFRTI, Sumptibus GVILIELMI FITZERI ANNO M. DC. XXVIII.


TITLE-PAGE OF DE MOTU CORDIS, 1628

1578 ~ 1657, UK

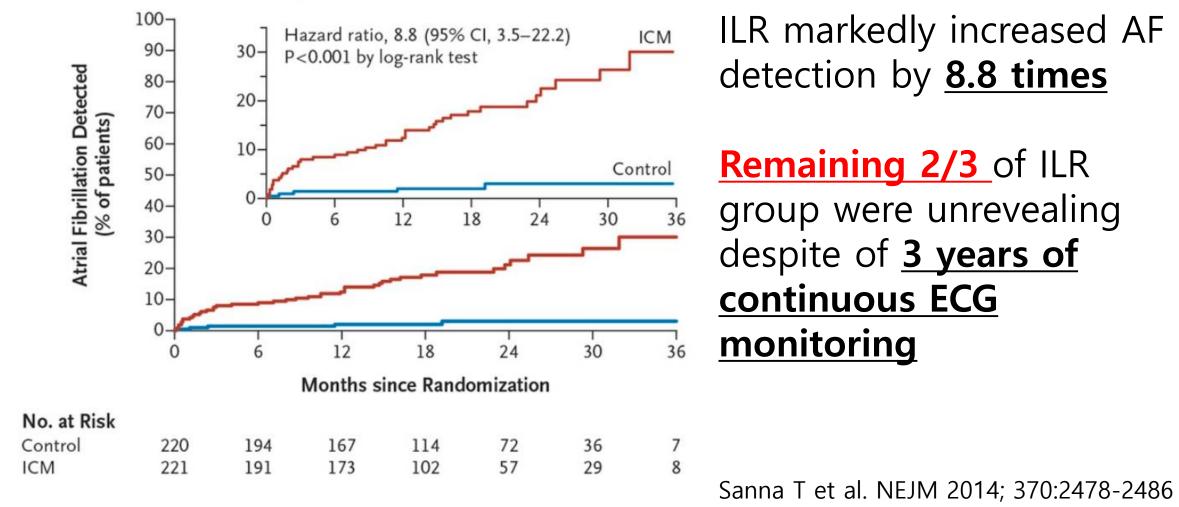

Invisible?


Normal Sinus Rhythm vs. Atrial Fibrillation

Regular Synchronized

> Mechanical Activity assessed by 4D MRI

> > Electrical Activity assessed by EKG


Irregular Dyssynchronized

Blood Stasis → Thrombi → Stroke

In CRYSRAL-AF Trial...

- N = 447 cryptogenic stroke patients
- 1:1 randomization to ICM vs. standard care
- C Detection of Atrial Fibrillation by 36 Months

KHRS 2023 Lame 23(1) - 24(541, 2022 Grand Walkerhill Seed, Arrest The 15th Annual Scientific Session of the Korean Heart Rhytim Society

Within Pacemaker Clinic,

- F/78, Sick sinus syndrome
- Pacemaker implantation in 2020
- 3 Recurrent stroke events in 2013, 2016, 2018
- Favors thromboembolic stroke
- Failed to diagnose AF before PM implantation
- During 3 years follow up, AF was detected in PM

V Sense Amp Imv Imv <t< th=""><th></th><th>1mV</th><th>1</th><th>r r</th><th>11</th><th>1 î</th><th>η r</th><th>v v</th><th>γγ</th><th>7~7</th><th>11</th><th>P</th><th>r e</th><th>¶ Ŷ</th><th>T</th><th>11</th><th>T</th><th>ŶΪ</th><th></th></t<>		1mV	1	r r	11	1 î	η r	v v	γγ	7~7	11	P	r e	¶ Ŷ	T	11	T	ŶΪ	
AS AS<	V Sense Amp	n ImV	1	1	1			-\	4	<u></u>	1	↓		\	1	ł			1
Immos 379 398 621 198 398 398 379 613 414 402 398 410 336 641 2 411 2 387 1 388 388 379 613 414 402 388 410 336 6 411 2 387 1 388 388 379 613 414 402 388 410 1 388 1 388 378 613 414 402 388 410 1 388 1 388 388 388 387 378 1 388 410 1 414 402 388 410 1					AMS	AMS	S AMS AS AS	AMS AS				AMSA	MS AS	AMS AS	AMS A	s ai As	NS A AS		
1379 398 621 198 398 398 379 613 414 402 398 410 1336 411 2 411 307 307 308 308 379 613 414 402 398 410 01 336 411 2 307 307 308 307 308 307 422 306 4307 308 613 422 4306 4307 613 613 422 4306 4307 613 614 613 613 613 613 613 613 613 614 613 614 613 613 614 613 613 614 614 613 614 614 614 614 614 614		1	1		1	1	Ve		1							Ve	1		1
336 641 2 367 378 378 366 665 313 320 367 422 395 367 366 66 01 12 22 32 32 367 422 395 367 1366 61 02 12 22 32 32 42 62 62 03 12 22 32 32 42 62 62 04 12 12 22 32 32 42 62 14 12 14	Markers					621	100	391	308		379 V	613			402				
1 1			_			2 8 367	2				_				4 39		1		9
AS AS EN AS MARIS MARIS AS			0.5		2 1 s	5		1 8 2 s		4 2 3 s	2		1 4 s		8	1	9 s		1
AS AS EN ASMENTS MENTS ASMENTS AS																			
AS AS ER AS AR S AR S AS A																			
AS AS ER AS AR S AR S AS A	a d d	sh.,	dd.	1)	-111-		(1					<u> </u>	a k		~.M		xh		1
AS AS EN AS MARIS MARIS AS	-1-1-1	4-	•∤	y_\$.	r-v	+ #	- ^ \r	11	-1-1	-1-11	-1-1	- -	1-14	- 1	p-þ	-1-	vv	V	1
AS AS EN AS MARIS MARIS AS	- p- y- p 1	∳- ∿	γ_γ_ γ_γ_	γ_≁. 1	r-1	+ + 1	γţ	14	-1-1/	-1-14 6	1		1-4 6	- p	р-ф 	1-	s- v 1	V~	1
, <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	-14-14- 1	-∲~ {}	r r ∤ 1	₽ 4. 	r-1 -{	* *	_^ \ }	1 Y	-p-p	-1-4 4	-11 1	 	1-4 1	- p	₽-∲ {}	-1- -1-	v v {	-V- -	1
<u>223 422 391 395 406 408 391 410 410 391 227 383 414 203 406 609 234</u>		-∲ -}	1 1 1 MS A	1-1- 1- MS AI			1 1 4 Ams a	1 1 1 MS AI	/ / ↓ //	1 11 	-11 -1 15 AM	 S AN	/ / 15 AM	1 ↓ //sam	γ_∥. 	-1	vv 	1 	1
<u>223 422 391 395 406 408 391 410 410 391 227 383 414 203 406 609 234</u>		-∲ -}	1 1 1 MS A	MS AI			∱ \/ AMS A	1 S Al	-∲-∲ ∳ AS AM	√ √ S_AN AS		is an	1 1 15 AM		}-} -} IS AN S	-1	v—v 		1 M
			1-1- 1 MS A AS AR	1 - 1 - 1 MS A1 S AR	S I	ASAR		1 1 MS AI	1	1	15 AN	 	↑ ∲ S All 	1 	γ_ - - s an s	-1	V-V 	{ MSAI 	M
387 7 414 2 398 2 375 2 324 504 2 367 344 371 398 3 352 340 340 297 352 324 334 313 289 32			1-1- 1 MS A AS AR	1-	S I	ASAR		1 1 MS AI S I S VS	1	1		IS AN S AN VS	↑ ∲ 15 All 15 1 VS	∱ ↓ ASAM ASA ↓ VS	p-∲ IS AN S └-, VS	-1	v-v } MS A VS	1 	M
	AS AS	{} 	1-1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	vs	s VS	ASAR	s vs	vs	vs	vs	VS	vs	vs	vs	vs	1 MS A AS 1 VS	v – v ∮ MS A vs _609_	vs	1

True AF events in EGM

Episodes				
Date / Time	Туре	Peak A / V Rate	Duration	Alerts
		(min-1)	(D:H:M:S)	
Mar 5, 2023 11:49 am	AMS Entry	187 / 63	0:00:00:04	
Mar 5, 2023 11:49 am	AMS Entry	226 / 124	0:00:00:08	
Mar 4, 2023 1:11 pm	High Ventricular Rate		0:00:00:37	А
Mar 4, 2023 1:01 pm	AMS Entry	640 / 194	0:00:45:42	
Mar 4, 2023 11:49 am	AMS Entry	290 / 135	0:00:00:12	

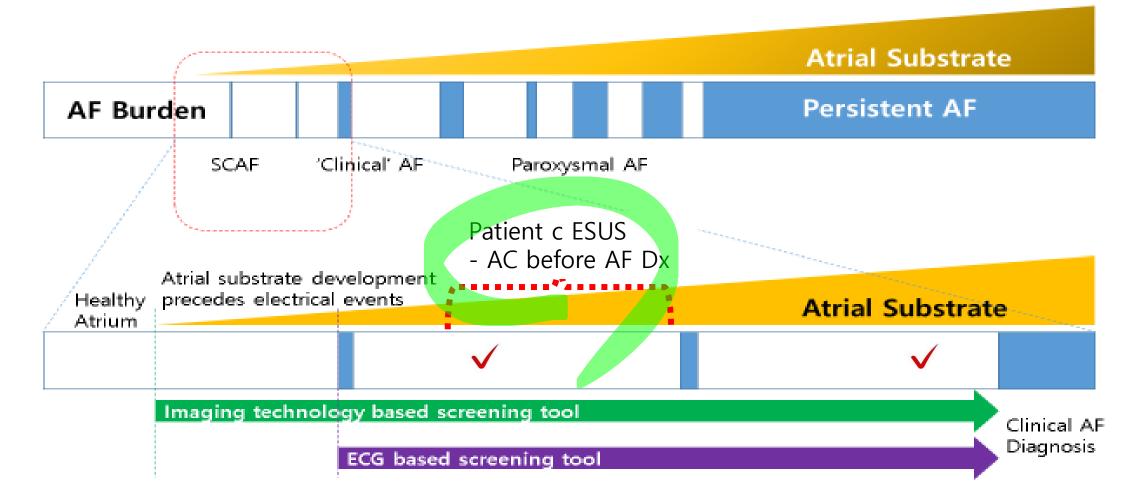
Atrial Cardionathy

 Recent advances in pa stroke even in patients cardiopathy", which i objective of this narrat cryptogenic stroke. We identified studies, inclu relationship between a atrial cardiopathy. Abn stroke before develop Although there are sev force in lead V1 (>5,(atrial enlargement ar Because the optimal <mark>remain uncertain, atr</mark> cardiopathy appears to stroke. Validation of th

Definition of atrial cardiomyopathy

The working group proposes the following working definition of atrial cardiomyopathy: 'Any complex of structural, architectural, contractile or electrophysiological changes affecting the atria with the potential to produce clinically-relevant manifestations' (*Table 1*).

Many diseases (like hypertension, heart failure, diabetes, and myocarditis) or conditions (like ageing and endocrine abnormalities) are known to induce or contribute to an atrial cardiomyopathy.


Europace 2016;18:1455-1490.

therapeutic target for anect oral anticoaguiants are currently being covered in the ARCADIA that.

Kato Y et al. Frontiers in Neurol. 2022; 13. https://doi.org/10.3389/fneur.2022.839398

AF is Progressive

Shin SY, Lip GYH. Can J Cardiol. 2018;34:1407-1411.

Subclinical AF (SCAF) & Stroke

> Eur J Echocardiogr. 2011 Feb;12(2):140-7. doi: 10.1093/ejechocard/jeq164. Epub 2010 Nov 26.

Impaired transport function of the left atrium and left atrial appendage in cryptogenic stroke patients with atrial septal aneurysm and without patent foramen ovale

Jin Oh Na ¹¹, Seung Yong Shin, Hong Euy Lim, Cheol Ung Choi, Seong Hwan Kim, Jin Won Kim, Eung Ju Kim, Eun Mi Lee, Seung-Woon Rha, Chang Gyu Park, Hong Seog Seo, Dong Joo Oh, Young-Hoon Kim

Impaired LA function may suggest SCAF in cryptogenic stroke patients

Abstract

Aims: Although atrial septal aneurysm (ASA) is frequently combined with patent foramen ovale and associated with cryptogenic stroke (CS), a pathophysiologic correlation between CS and ASA alone has not been fully elucidated. The aims of this study were to assess transport functions of the left atrium (LA) and left atrial appendage (LAA), and to evaluate their relationship in CS subjects with ASA alone.

Methods and results: This study consisted of 38 CS subjects with ASA alone and 38 matched controls. Transthoracic echocardiography including tissue Doppler imaging was performed in all subjects and transesophageal echocardiography was conducted in CS subjects to assess LAA emptying velocity (LAAev). We also measured soluble P- and E-selectin, interleukin-6 (IL-6), and high-sensitivity C-reactive protein (hs-CRP) as indices of prothrombogenic and proinflammatory activity. Although there were no differences in left ventricular functions and baseline characteristics between the two groups, CS subjects had significantly larger LA volume and lower LA active pump function compared with controls. LAAev was significantly correlated with LA active function. CS subjects had significantly higher E-selectin (P = 0.046), IL-6 (P = 0.040), and hs-CRP (P = 0.001) compared with controls.

Conclusions: Compared with controls, LA active pump function was significantly depressed and closely correlated with LAAev in CS subjects with ASA alone. Moreover, plasma levels of E-selectin, IL-6, and hs-CRP were significantly higher in CS subjects with ASA alone. These findings suggest that impaired LA and LAA functions are a crucial pathophysiologic mechanism for ischaemic stroke in subjects with ASA alone.

LA function w/o PAF

F

n

 \mathbf{O}

a

R

7

h

h

Q

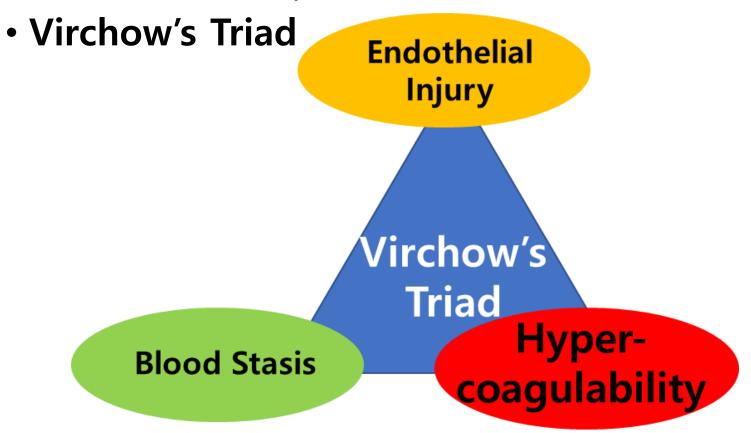
Normal

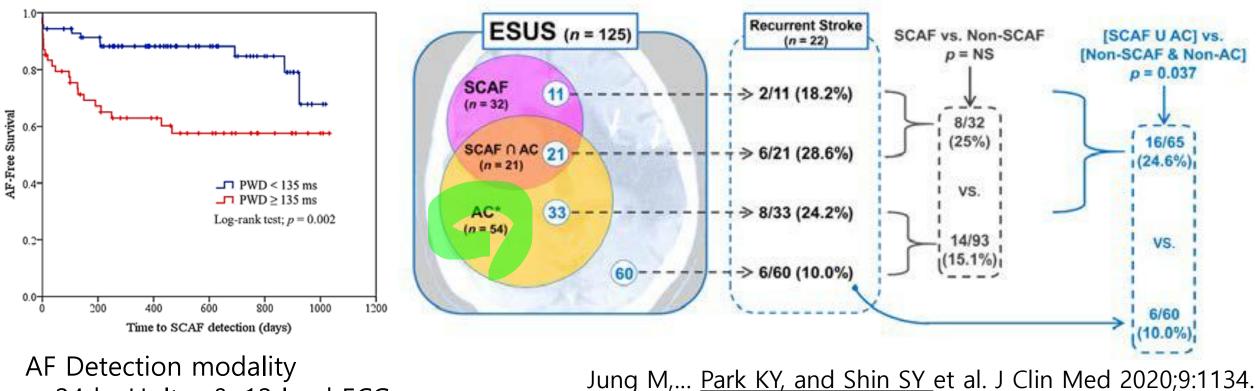
Abnormal

LA function w PAF during SR

Added value by LA **Functional** assessment

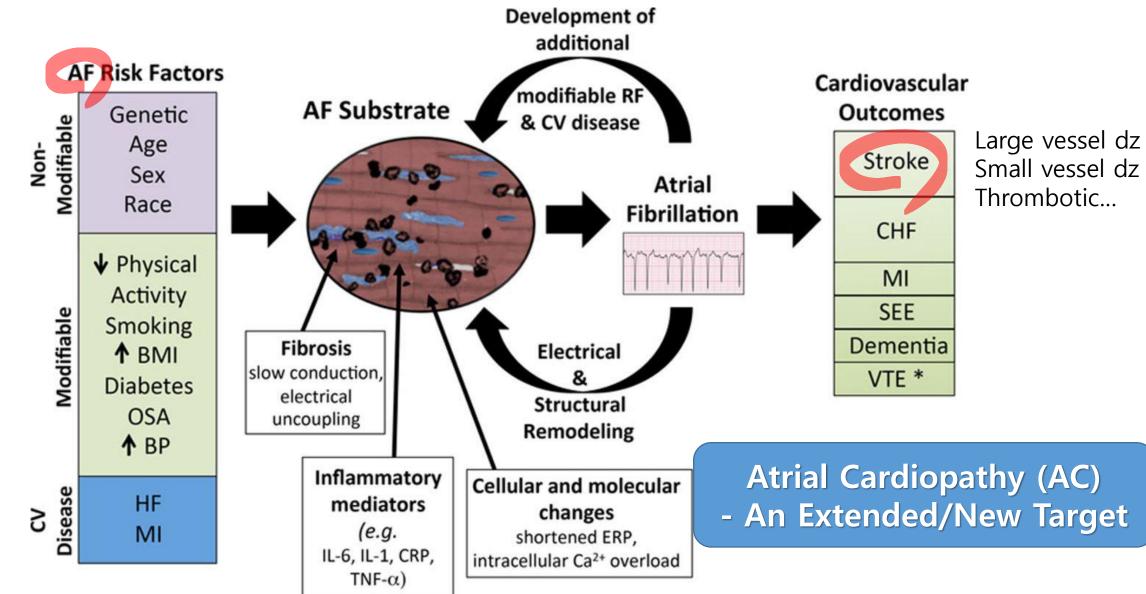
LA function w PAF during AF


LA function w Persistent AF


Rudolf Ludwig Karl Virchow

• 1821 ~ 1902, Germany

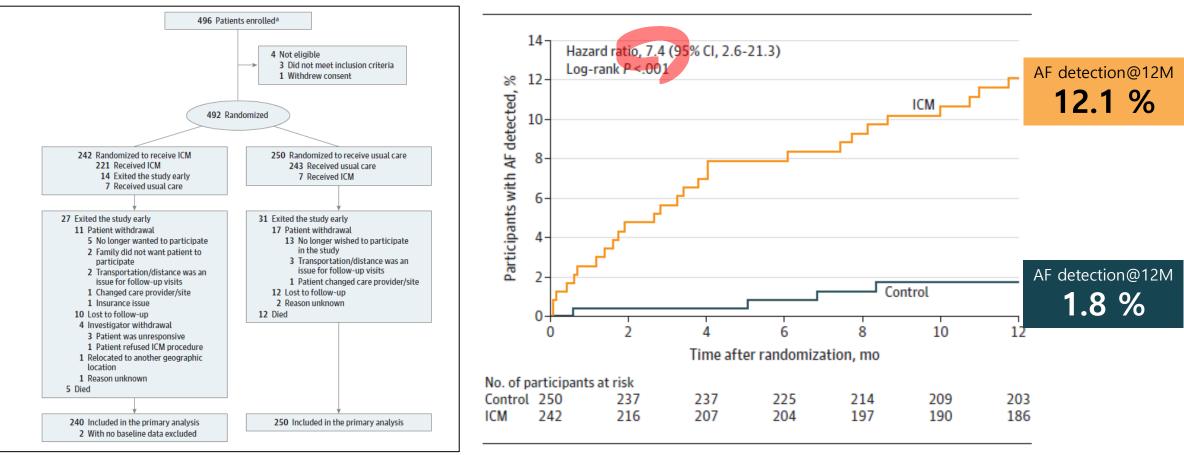
Risk Stratification by LA Electrical Remodeling (P wave duration by Signal averaged ECG)



- 24 hr Holter & 12 lead ECG

Dynamic Target vs. Static Target

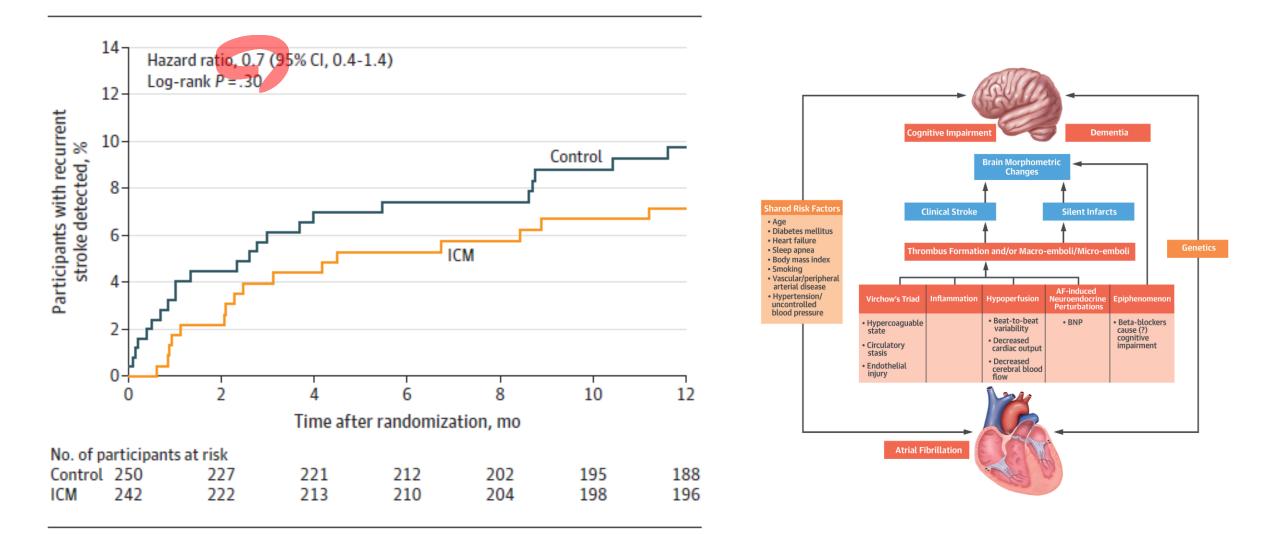
Shared Risk Factors & Pathogenesis



Recently...

STROKE-AF RCT

Tested value of **Prolonged & Continuous ECG monitoring** in Large/Small vessel diseases



Bernstein RA et al. JAMA 2021; 325(21):2169-2177

STROKE – AF Cont'D

Stroke Recurrence Reduced...

Bernstein RA et al. JAMA 2021; 325(21):2169-2177

Diener HC et al. J Am Coll Cardiol. 2019;73(5):612–9.

Take Home Messages

- It is time to focus our effort to Atrial Cardiopathy (AC).
- AC is **not a new** disease entity.
- Features suggestive of AC can be found within our current practice.
- Organization and verification of features toward clinical benefit is necessary

Thank you

Your Attention E-mail: theshin04@cau.ac.kr theshin04@naver.com +82 - 10-8863-1078